From 82c2d358d3f558f94c1802a8ebf590167eb1fd78 Mon Sep 17 00:00:00 2001 From: rexim Date: Sun, 24 Mar 2024 04:25:29 +0700 Subject: The game is written entirely in Ada now --- raylib/raylib-5.0_linux_amd64/include/raymath.h | 2190 ----------------------- 1 file changed, 2190 deletions(-) delete mode 100644 raylib/raylib-5.0_linux_amd64/include/raymath.h (limited to 'raylib/raylib-5.0_linux_amd64/include/raymath.h') diff --git a/raylib/raylib-5.0_linux_amd64/include/raymath.h b/raylib/raylib-5.0_linux_amd64/include/raymath.h deleted file mode 100644 index ff60170..0000000 --- a/raylib/raylib-5.0_linux_amd64/include/raymath.h +++ /dev/null @@ -1,2190 +0,0 @@ -/********************************************************************************************** -* -* raymath v1.5 - Math functions to work with Vector2, Vector3, Matrix and Quaternions -* -* CONVENTIONS: -* - Matrix structure is defined as row-major (memory layout) but parameters naming AND all -* math operations performed by the library consider the structure as it was column-major -* It is like transposed versions of the matrices are used for all the maths -* It benefits some functions making them cache-friendly and also avoids matrix -* transpositions sometimes required by OpenGL -* Example: In memory order, row0 is [m0 m4 m8 m12] but in semantic math row0 is [m0 m1 m2 m3] -* - Functions are always self-contained, no function use another raymath function inside, -* required code is directly re-implemented inside -* - Functions input parameters are always received by value (2 unavoidable exceptions) -* - Functions use always a "result" variable for return -* - Functions are always defined inline -* - Angles are always in radians (DEG2RAD/RAD2DEG macros provided for convenience) -* - No compound literals used to make sure libray is compatible with C++ -* -* CONFIGURATION: -* #define RAYMATH_IMPLEMENTATION -* Generates the implementation of the library into the included file. -* If not defined, the library is in header only mode and can be included in other headers -* or source files without problems. But only ONE file should hold the implementation. -* -* #define RAYMATH_STATIC_INLINE -* Define static inline functions code, so #include header suffices for use. -* This may use up lots of memory. -* -* -* LICENSE: zlib/libpng -* -* Copyright (c) 2015-2023 Ramon Santamaria (@raysan5) -* -* This software is provided "as-is", without any express or implied warranty. In no event -* will the authors be held liable for any damages arising from the use of this software. -* -* Permission is granted to anyone to use this software for any purpose, including commercial -* applications, and to alter it and redistribute it freely, subject to the following restrictions: -* -* 1. The origin of this software must not be misrepresented; you must not claim that you -* wrote the original software. If you use this software in a product, an acknowledgment -* in the product documentation would be appreciated but is not required. -* -* 2. Altered source versions must be plainly marked as such, and must not be misrepresented -* as being the original software. -* -* 3. This notice may not be removed or altered from any source distribution. -* -**********************************************************************************************/ - -#ifndef RAYMATH_H -#define RAYMATH_H - -#if defined(RAYMATH_IMPLEMENTATION) && defined(RAYMATH_STATIC_INLINE) - #error "Specifying both RAYMATH_IMPLEMENTATION and RAYMATH_STATIC_INLINE is contradictory" -#endif - -// Function specifiers definition -#if defined(RAYMATH_IMPLEMENTATION) - #if defined(_WIN32) && defined(BUILD_LIBTYPE_SHARED) - #define RMAPI __declspec(dllexport) extern inline // We are building raylib as a Win32 shared library (.dll). - #elif defined(_WIN32) && defined(USE_LIBTYPE_SHARED) - #define RMAPI __declspec(dllimport) // We are using raylib as a Win32 shared library (.dll) - #else - #define RMAPI extern inline // Provide external definition - #endif -#elif defined(RAYMATH_STATIC_INLINE) - #define RMAPI static inline // Functions may be inlined, no external out-of-line definition -#else - #if defined(__TINYC__) - #define RMAPI static inline // plain inline not supported by tinycc (See issue #435) - #else - #define RMAPI inline // Functions may be inlined or external definition used - #endif -#endif - -//---------------------------------------------------------------------------------- -// Defines and Macros -//---------------------------------------------------------------------------------- -#ifndef PI - #define PI 3.14159265358979323846f -#endif - -#ifndef EPSILON - #define EPSILON 0.000001f -#endif - -#ifndef DEG2RAD - #define DEG2RAD (PI/180.0f) -#endif - -#ifndef RAD2DEG - #define RAD2DEG (180.0f/PI) -#endif - -// Get float vector for Matrix -#ifndef MatrixToFloat - #define MatrixToFloat(mat) (MatrixToFloatV(mat).v) -#endif - -// Get float vector for Vector3 -#ifndef Vector3ToFloat - #define Vector3ToFloat(vec) (Vector3ToFloatV(vec).v) -#endif - -//---------------------------------------------------------------------------------- -// Types and Structures Definition -//---------------------------------------------------------------------------------- -#if !defined(RL_VECTOR2_TYPE) -// Vector2 type -typedef struct Vector2 { - float x; - float y; -} Vector2; -#define RL_VECTOR2_TYPE -#endif - -#if !defined(RL_VECTOR3_TYPE) -// Vector3 type -typedef struct Vector3 { - float x; - float y; - float z; -} Vector3; -#define RL_VECTOR3_TYPE -#endif - -#if !defined(RL_VECTOR4_TYPE) -// Vector4 type -typedef struct Vector4 { - float x; - float y; - float z; - float w; -} Vector4; -#define RL_VECTOR4_TYPE -#endif - -#if !defined(RL_QUATERNION_TYPE) -// Quaternion type -typedef Vector4 Quaternion; -#define RL_QUATERNION_TYPE -#endif - -#if !defined(RL_MATRIX_TYPE) -// Matrix type (OpenGL style 4x4 - right handed, column major) -typedef struct Matrix { - float m0, m4, m8, m12; // Matrix first row (4 components) - float m1, m5, m9, m13; // Matrix second row (4 components) - float m2, m6, m10, m14; // Matrix third row (4 components) - float m3, m7, m11, m15; // Matrix fourth row (4 components) -} Matrix; -#define RL_MATRIX_TYPE -#endif - -// NOTE: Helper types to be used instead of array return types for *ToFloat functions -typedef struct float3 { - float v[3]; -} float3; - -typedef struct float16 { - float v[16]; -} float16; - -#include // Required for: sinf(), cosf(), tan(), atan2f(), sqrtf(), floor(), fminf(), fmaxf(), fabs() - -//---------------------------------------------------------------------------------- -// Module Functions Definition - Utils math -//---------------------------------------------------------------------------------- - -// Clamp float value -RMAPI float Clamp(float value, float min, float max) -{ - float result = (value < min)? min : value; - - if (result > max) result = max; - - return result; -} - -// Calculate linear interpolation between two floats -RMAPI float Lerp(float start, float end, float amount) -{ - float result = start + amount*(end - start); - - return result; -} - -// Normalize input value within input range -RMAPI float Normalize(float value, float start, float end) -{ - float result = (value - start)/(end - start); - - return result; -} - -// Remap input value within input range to output range -RMAPI float Remap(float value, float inputStart, float inputEnd, float outputStart, float outputEnd) -{ - float result = (value - inputStart)/(inputEnd - inputStart)*(outputEnd - outputStart) + outputStart; - - return result; -} - -// Wrap input value from min to max -RMAPI float Wrap(float value, float min, float max) -{ - float result = value - (max - min)*floorf((value - min)/(max - min)); - - return result; -} - -// Check whether two given floats are almost equal -RMAPI int FloatEquals(float x, float y) -{ -#if !defined(EPSILON) - #define EPSILON 0.000001f -#endif - - int result = (fabsf(x - y)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(x), fabsf(y)))); - - return result; -} - -//---------------------------------------------------------------------------------- -// Module Functions Definition - Vector2 math -//---------------------------------------------------------------------------------- - -// Vector with components value 0.0f -RMAPI Vector2 Vector2Zero(void) -{ - Vector2 result = { 0.0f, 0.0f }; - - return result; -} - -// Vector with components value 1.0f -RMAPI Vector2 Vector2One(void) -{ - Vector2 result = { 1.0f, 1.0f }; - - return result; -} - -// Add two vectors (v1 + v2) -RMAPI Vector2 Vector2Add(Vector2 v1, Vector2 v2) -{ - Vector2 result = { v1.x + v2.x, v1.y + v2.y }; - - return result; -} - -// Add vector and float value -RMAPI Vector2 Vector2AddValue(Vector2 v, float add) -{ - Vector2 result = { v.x + add, v.y + add }; - - return result; -} - -// Subtract two vectors (v1 - v2) -RMAPI Vector2 Vector2Subtract(Vector2 v1, Vector2 v2) -{ - Vector2 result = { v1.x - v2.x, v1.y - v2.y }; - - return result; -} - -// Subtract vector by float value -RMAPI Vector2 Vector2SubtractValue(Vector2 v, float sub) -{ - Vector2 result = { v.x - sub, v.y - sub }; - - return result; -} - -// Calculate vector length -RMAPI float Vector2Length(Vector2 v) -{ - float result = sqrtf((v.x*v.x) + (v.y*v.y)); - - return result; -} - -// Calculate vector square length -RMAPI float Vector2LengthSqr(Vector2 v) -{ - float result = (v.x*v.x) + (v.y*v.y); - - return result; -} - -// Calculate two vectors dot product -RMAPI float Vector2DotProduct(Vector2 v1, Vector2 v2) -{ - float result = (v1.x*v2.x + v1.y*v2.y); - - return result; -} - -// Calculate distance between two vectors -RMAPI float Vector2Distance(Vector2 v1, Vector2 v2) -{ - float result = sqrtf((v1.x - v2.x)*(v1.x - v2.x) + (v1.y - v2.y)*(v1.y - v2.y)); - - return result; -} - -// Calculate square distance between two vectors -RMAPI float Vector2DistanceSqr(Vector2 v1, Vector2 v2) -{ - float result = ((v1.x - v2.x)*(v1.x - v2.x) + (v1.y - v2.y)*(v1.y - v2.y)); - - return result; -} - -// Calculate angle between two vectors -// NOTE: Angle is calculated from origin point (0, 0) -RMAPI float Vector2Angle(Vector2 v1, Vector2 v2) -{ - float result = 0.0f; - - float dot = v1.x*v2.x + v1.y*v2.y; - float det = v1.x*v2.y - v1.y*v2.x; - - result = atan2f(det, dot); - - return result; -} - -// Calculate angle defined by a two vectors line -// NOTE: Parameters need to be normalized -// Current implementation should be aligned with glm::angle -RMAPI float Vector2LineAngle(Vector2 start, Vector2 end) -{ - float result = 0.0f; - - // TODO(10/9/2023): Currently angles move clockwise, determine if this is wanted behavior - result = -atan2f(end.y - start.y, end.x - start.x); - - return result; -} - -// Scale vector (multiply by value) -RMAPI Vector2 Vector2Scale(Vector2 v, float scale) -{ - Vector2 result = { v.x*scale, v.y*scale }; - - return result; -} - -// Multiply vector by vector -RMAPI Vector2 Vector2Multiply(Vector2 v1, Vector2 v2) -{ - Vector2 result = { v1.x*v2.x, v1.y*v2.y }; - - return result; -} - -// Negate vector -RMAPI Vector2 Vector2Negate(Vector2 v) -{ - Vector2 result = { -v.x, -v.y }; - - return result; -} - -// Divide vector by vector -RMAPI Vector2 Vector2Divide(Vector2 v1, Vector2 v2) -{ - Vector2 result = { v1.x/v2.x, v1.y/v2.y }; - - return result; -} - -// Normalize provided vector -RMAPI Vector2 Vector2Normalize(Vector2 v) -{ - Vector2 result = { 0 }; - float length = sqrtf((v.x*v.x) + (v.y*v.y)); - - if (length > 0) - { - float ilength = 1.0f/length; - result.x = v.x*ilength; - result.y = v.y*ilength; - } - - return result; -} - -// Transforms a Vector2 by a given Matrix -RMAPI Vector2 Vector2Transform(Vector2 v, Matrix mat) -{ - Vector2 result = { 0 }; - - float x = v.x; - float y = v.y; - float z = 0; - - result.x = mat.m0*x + mat.m4*y + mat.m8*z + mat.m12; - result.y = mat.m1*x + mat.m5*y + mat.m9*z + mat.m13; - - return result; -} - -// Calculate linear interpolation between two vectors -RMAPI Vector2 Vector2Lerp(Vector2 v1, Vector2 v2, float amount) -{ - Vector2 result = { 0 }; - - result.x = v1.x + amount*(v2.x - v1.x); - result.y = v1.y + amount*(v2.y - v1.y); - - return result; -} - -// Calculate reflected vector to normal -RMAPI Vector2 Vector2Reflect(Vector2 v, Vector2 normal) -{ - Vector2 result = { 0 }; - - float dotProduct = (v.x*normal.x + v.y*normal.y); // Dot product - - result.x = v.x - (2.0f*normal.x)*dotProduct; - result.y = v.y - (2.0f*normal.y)*dotProduct; - - return result; -} - -// Rotate vector by angle -RMAPI Vector2 Vector2Rotate(Vector2 v, float angle) -{ - Vector2 result = { 0 }; - - float cosres = cosf(angle); - float sinres = sinf(angle); - - result.x = v.x*cosres - v.y*sinres; - result.y = v.x*sinres + v.y*cosres; - - return result; -} - -// Move Vector towards target -RMAPI Vector2 Vector2MoveTowards(Vector2 v, Vector2 target, float maxDistance) -{ - Vector2 result = { 0 }; - - float dx = target.x - v.x; - float dy = target.y - v.y; - float value = (dx*dx) + (dy*dy); - - if ((value == 0) || ((maxDistance >= 0) && (value <= maxDistance*maxDistance))) return target; - - float dist = sqrtf(value); - - result.x = v.x + dx/dist*maxDistance; - result.y = v.y + dy/dist*maxDistance; - - return result; -} - -// Invert the given vector -RMAPI Vector2 Vector2Invert(Vector2 v) -{ - Vector2 result = { 1.0f/v.x, 1.0f/v.y }; - - return result; -} - -// Clamp the components of the vector between -// min and max values specified by the given vectors -RMAPI Vector2 Vector2Clamp(Vector2 v, Vector2 min, Vector2 max) -{ - Vector2 result = { 0 }; - - result.x = fminf(max.x, fmaxf(min.x, v.x)); - result.y = fminf(max.y, fmaxf(min.y, v.y)); - - return result; -} - -// Clamp the magnitude of the vector between two min and max values -RMAPI Vector2 Vector2ClampValue(Vector2 v, float min, float max) -{ - Vector2 result = v; - - float length = (v.x*v.x) + (v.y*v.y); - if (length > 0.0f) - { - length = sqrtf(length); - - if (length < min) - { - float scale = min/length; - result.x = v.x*scale; - result.y = v.y*scale; - } - else if (length > max) - { - float scale = max/length; - result.x = v.x*scale; - result.y = v.y*scale; - } - } - - return result; -} - -// Check whether two given vectors are almost equal -RMAPI int Vector2Equals(Vector2 p, Vector2 q) -{ -#if !defined(EPSILON) - #define EPSILON 0.000001f -#endif - - int result = ((fabsf(p.x - q.x)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.x), fabsf(q.x))))) && - ((fabsf(p.y - q.y)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.y), fabsf(q.y))))); - - return result; -} - -//---------------------------------------------------------------------------------- -// Module Functions Definition - Vector3 math -//---------------------------------------------------------------------------------- - -// Vector with components value 0.0f -RMAPI Vector3 Vector3Zero(void) -{ - Vector3 result = { 0.0f, 0.0f, 0.0f }; - - return result; -} - -// Vector with components value 1.0f -RMAPI Vector3 Vector3One(void) -{ - Vector3 result = { 1.0f, 1.0f, 1.0f }; - - return result; -} - -// Add two vectors -RMAPI Vector3 Vector3Add(Vector3 v1, Vector3 v2) -{ - Vector3 result = { v1.x + v2.x, v1.y + v2.y, v1.z + v2.z }; - - return result; -} - -// Add vector and float value -RMAPI Vector3 Vector3AddValue(Vector3 v, float add) -{ - Vector3 result = { v.x + add, v.y + add, v.z + add }; - - return result; -} - -// Subtract two vectors -RMAPI Vector3 Vector3Subtract(Vector3 v1, Vector3 v2) -{ - Vector3 result = { v1.x - v2.x, v1.y - v2.y, v1.z - v2.z }; - - return result; -} - -// Subtract vector by float value -RMAPI Vector3 Vector3SubtractValue(Vector3 v, float sub) -{ - Vector3 result = { v.x - sub, v.y - sub, v.z - sub }; - - return result; -} - -// Multiply vector by scalar -RMAPI Vector3 Vector3Scale(Vector3 v, float scalar) -{ - Vector3 result = { v.x*scalar, v.y*scalar, v.z*scalar }; - - return result; -} - -// Multiply vector by vector -RMAPI Vector3 Vector3Multiply(Vector3 v1, Vector3 v2) -{ - Vector3 result = { v1.x*v2.x, v1.y*v2.y, v1.z*v2.z }; - - return result; -} - -// Calculate two vectors cross product -RMAPI Vector3 Vector3CrossProduct(Vector3 v1, Vector3 v2) -{ - Vector3 result = { v1.y*v2.z - v1.z*v2.y, v1.z*v2.x - v1.x*v2.z, v1.x*v2.y - v1.y*v2.x }; - - return result; -} - -// Calculate one vector perpendicular vector -RMAPI Vector3 Vector3Perpendicular(Vector3 v) -{ - Vector3 result = { 0 }; - - float min = (float) fabs(v.x); - Vector3 cardinalAxis = {1.0f, 0.0f, 0.0f}; - - if (fabsf(v.y) < min) - { - min = (float) fabs(v.y); - Vector3 tmp = {0.0f, 1.0f, 0.0f}; - cardinalAxis = tmp; - } - - if (fabsf(v.z) < min) - { - Vector3 tmp = {0.0f, 0.0f, 1.0f}; - cardinalAxis = tmp; - } - - // Cross product between vectors - result.x = v.y*cardinalAxis.z - v.z*cardinalAxis.y; - result.y = v.z*cardinalAxis.x - v.x*cardinalAxis.z; - result.z = v.x*cardinalAxis.y - v.y*cardinalAxis.x; - - return result; -} - -// Calculate vector length -RMAPI float Vector3Length(const Vector3 v) -{ - float result = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z); - - return result; -} - -// Calculate vector square length -RMAPI float Vector3LengthSqr(const Vector3 v) -{ - float result = v.x*v.x + v.y*v.y + v.z*v.z; - - return result; -} - -// Calculate two vectors dot product -RMAPI float Vector3DotProduct(Vector3 v1, Vector3 v2) -{ - float result = (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z); - - return result; -} - -// Calculate distance between two vectors -RMAPI float Vector3Distance(Vector3 v1, Vector3 v2) -{ - float result = 0.0f; - - float dx = v2.x - v1.x; - float dy = v2.y - v1.y; - float dz = v2.z - v1.z; - result = sqrtf(dx*dx + dy*dy + dz*dz); - - return result; -} - -// Calculate square distance between two vectors -RMAPI float Vector3DistanceSqr(Vector3 v1, Vector3 v2) -{ - float result = 0.0f; - - float dx = v2.x - v1.x; - float dy = v2.y - v1.y; - float dz = v2.z - v1.z; - result = dx*dx + dy*dy + dz*dz; - - return result; -} - -// Calculate angle between two vectors -RMAPI float Vector3Angle(Vector3 v1, Vector3 v2) -{ - float result = 0.0f; - - Vector3 cross = { v1.y*v2.z - v1.z*v2.y, v1.z*v2.x - v1.x*v2.z, v1.x*v2.y - v1.y*v2.x }; - float len = sqrtf(cross.x*cross.x + cross.y*cross.y + cross.z*cross.z); - float dot = (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z); - result = atan2f(len, dot); - - return result; -} - -// Negate provided vector (invert direction) -RMAPI Vector3 Vector3Negate(Vector3 v) -{ - Vector3 result = { -v.x, -v.y, -v.z }; - - return result; -} - -// Divide vector by vector -RMAPI Vector3 Vector3Divide(Vector3 v1, Vector3 v2) -{ - Vector3 result = { v1.x/v2.x, v1.y/v2.y, v1.z/v2.z }; - - return result; -} - -// Normalize provided vector -RMAPI Vector3 Vector3Normalize(Vector3 v) -{ - Vector3 result = v; - - float length = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z); - if (length != 0.0f) - { - float ilength = 1.0f/length; - - result.x *= ilength; - result.y *= ilength; - result.z *= ilength; - } - - return result; -} - -//Calculate the projection of the vector v1 on to v2 -RMAPI Vector3 Vector3Project(Vector3 v1, Vector3 v2) -{ - Vector3 result = { 0 }; - - float v1dv2 = (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z); - float v2dv2 = (v2.x*v2.x + v2.y*v2.y + v2.z*v2.z); - - float mag = v1dv2/v2dv2; - - result.x = v2.x*mag; - result.y = v2.y*mag; - result.z = v2.z*mag; - - return result; -} - -//Calculate the rejection of the vector v1 on to v2 -RMAPI Vector3 Vector3Reject(Vector3 v1, Vector3 v2) -{ - Vector3 result = { 0 }; - - float v1dv2 = (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z); - float v2dv2 = (v2.x*v2.x + v2.y*v2.y + v2.z*v2.z); - - float mag = v1dv2/v2dv2; - - result.x = v1.x - (v2.x*mag); - result.y = v1.y - (v2.y*mag); - result.z = v1.z - (v2.z*mag); - - return result; -} - -// Orthonormalize provided vectors -// Makes vectors normalized and orthogonal to each other -// Gram-Schmidt function implementation -RMAPI void Vector3OrthoNormalize(Vector3 *v1, Vector3 *v2) -{ - float length = 0.0f; - float ilength = 0.0f; - - // Vector3Normalize(*v1); - Vector3 v = *v1; - length = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z); - if (length == 0.0f) length = 1.0f; - ilength = 1.0f/length; - v1->x *= ilength; - v1->y *= ilength; - v1->z *= ilength; - - // Vector3CrossProduct(*v1, *v2) - Vector3 vn1 = { v1->y*v2->z - v1->z*v2->y, v1->z*v2->x - v1->x*v2->z, v1->x*v2->y - v1->y*v2->x }; - - // Vector3Normalize(vn1); - v = vn1; - length = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z); - if (length == 0.0f) length = 1.0f; - ilength = 1.0f/length; - vn1.x *= ilength; - vn1.y *= ilength; - vn1.z *= ilength; - - // Vector3CrossProduct(vn1, *v1) - Vector3 vn2 = { vn1.y*v1->z - vn1.z*v1->y, vn1.z*v1->x - vn1.x*v1->z, vn1.x*v1->y - vn1.y*v1->x }; - - *v2 = vn2; -} - -// Transforms a Vector3 by a given Matrix -RMAPI Vector3 Vector3Transform(Vector3 v, Matrix mat) -{ - Vector3 result = { 0 }; - - float x = v.x; - float y = v.y; - float z = v.z; - - result.x = mat.m0*x + mat.m4*y + mat.m8*z + mat.m12; - result.y = mat.m1*x + mat.m5*y + mat.m9*z + mat.m13; - result.z = mat.m2*x + mat.m6*y + mat.m10*z + mat.m14; - - return result; -} - -// Transform a vector by quaternion rotation -RMAPI Vector3 Vector3RotateByQuaternion(Vector3 v, Quaternion q) -{ - Vector3 result = { 0 }; - - result.x = v.x*(q.x*q.x + q.w*q.w - q.y*q.y - q.z*q.z) + v.y*(2*q.x*q.y - 2*q.w*q.z) + v.z*(2*q.x*q.z + 2*q.w*q.y); - result.y = v.x*(2*q.w*q.z + 2*q.x*q.y) + v.y*(q.w*q.w - q.x*q.x + q.y*q.y - q.z*q.z) + v.z*(-2*q.w*q.x + 2*q.y*q.z); - result.z = v.x*(-2*q.w*q.y + 2*q.x*q.z) + v.y*(2*q.w*q.x + 2*q.y*q.z)+ v.z*(q.w*q.w - q.x*q.x - q.y*q.y + q.z*q.z); - - return result; -} - -// Rotates a vector around an axis -RMAPI Vector3 Vector3RotateByAxisAngle(Vector3 v, Vector3 axis, float angle) -{ - // Using Euler-Rodrigues Formula - // Ref.: https://en.wikipedia.org/w/index.php?title=Euler%E2%80%93Rodrigues_formula - - Vector3 result = v; - - // Vector3Normalize(axis); - float length = sqrtf(axis.x*axis.x + axis.y*axis.y + axis.z*axis.z); - if (length == 0.0f) length = 1.0f; - float ilength = 1.0f / length; - axis.x *= ilength; - axis.y *= ilength; - axis.z *= ilength; - - angle /= 2.0f; - float a = sinf(angle); - float b = axis.x*a; - float c = axis.y*a; - float d = axis.z*a; - a = cosf(angle); - Vector3 w = { b, c, d }; - - // Vector3CrossProduct(w, v) - Vector3 wv = { w.y*v.z - w.z*v.y, w.z*v.x - w.x*v.z, w.x*v.y - w.y*v.x }; - - // Vector3CrossProduct(w, wv) - Vector3 wwv = { w.y*wv.z - w.z*wv.y, w.z*wv.x - w.x*wv.z, w.x*wv.y - w.y*wv.x }; - - // Vector3Scale(wv, 2*a) - a *= 2; - wv.x *= a; - wv.y *= a; - wv.z *= a; - - // Vector3Scale(wwv, 2) - wwv.x *= 2; - wwv.y *= 2; - wwv.z *= 2; - - result.x += wv.x; - result.y += wv.y; - result.z += wv.z; - - result.x += wwv.x; - result.y += wwv.y; - result.z += wwv.z; - - return result; -} - -// Calculate linear interpolation between two vectors -RMAPI Vector3 Vector3Lerp(Vector3 v1, Vector3 v2, float amount) -{ - Vector3 result = { 0 }; - - result.x = v1.x + amount*(v2.x - v1.x); - result.y = v1.y + amount*(v2.y - v1.y); - result.z = v1.z + amount*(v2.z - v1.z); - - return result; -} - -// Calculate reflected vector to normal -RMAPI Vector3 Vector3Reflect(Vector3 v, Vector3 normal) -{ - Vector3 result = { 0 }; - - // I is the original vector - // N is the normal of the incident plane - // R = I - (2*N*(DotProduct[I, N])) - - float dotProduct = (v.x*normal.x + v.y*normal.y + v.z*normal.z); - - result.x = v.x - (2.0f*normal.x)*dotProduct; - result.y = v.y - (2.0f*normal.y)*dotProduct; - result.z = v.z - (2.0f*normal.z)*dotProduct; - - return result; -} - -// Get min value for each pair of components -RMAPI Vector3 Vector3Min(Vector3 v1, Vector3 v2) -{ - Vector3 result = { 0 }; - - result.x = fminf(v1.x, v2.x); - result.y = fminf(v1.y, v2.y); - result.z = fminf(v1.z, v2.z); - - return result; -} - -// Get max value for each pair of components -RMAPI Vector3 Vector3Max(Vector3 v1, Vector3 v2) -{ - Vector3 result = { 0 }; - - result.x = fmaxf(v1.x, v2.x); - result.y = fmaxf(v1.y, v2.y); - result.z = fmaxf(v1.z, v2.z); - - return result; -} - -// Compute barycenter coordinates (u, v, w) for point p with respect to triangle (a, b, c) -// NOTE: Assumes P is on the plane of the triangle -RMAPI Vector3 Vector3Barycenter(Vector3 p, Vector3 a, Vector3 b, Vector3 c) -{ - Vector3 result = { 0 }; - - Vector3 v0 = { b.x - a.x, b.y - a.y, b.z - a.z }; // Vector3Subtract(b, a) - Vector3 v1 = { c.x - a.x, c.y - a.y, c.z - a.z }; // Vector3Subtract(c, a) - Vector3 v2 = { p.x - a.x, p.y - a.y, p.z - a.z }; // Vector3Subtract(p, a) - float d00 = (v0.x*v0.x + v0.y*v0.y + v0.z*v0.z); // Vector3DotProduct(v0, v0) - float d01 = (v0.x*v1.x + v0.y*v1.y + v0.z*v1.z); // Vector3DotProduct(v0, v1) - float d11 = (v1.x*v1.x + v1.y*v1.y + v1.z*v1.z); // Vector3DotProduct(v1, v1) - float d20 = (v2.x*v0.x + v2.y*v0.y + v2.z*v0.z); // Vector3DotProduct(v2, v0) - float d21 = (v2.x*v1.x + v2.y*v1.y + v2.z*v1.z); // Vector3DotProduct(v2, v1) - - float denom = d00*d11 - d01*d01; - - result.y = (d11*d20 - d01*d21)/denom; - result.z = (d00*d21 - d01*d20)/denom; - result.x = 1.0f - (result.z + result.y); - - return result; -} - -// Projects a Vector3 from screen space into object space -// NOTE: We are avoiding calling other raymath functions despite available -RMAPI Vector3 Vector3Unproject(Vector3 source, Matrix projection, Matrix view) -{ - Vector3 result = { 0 }; - - // Calculate unprojected matrix (multiply view matrix by projection matrix) and invert it - Matrix matViewProj = { // MatrixMultiply(view, projection); - view.m0*projection.m0 + view.m1*projection.m4 + view.m2*projection.m8 + view.m3*projection.m12, - view.m0*projection.m1 + view.m1*projection.m5 + view.m2*projection.m9 + view.m3*projection.m13, - view.m0*projection.m2 + view.m1*projection.m6 + view.m2*projection.m10 + view.m3*projection.m14, - view.m0*projection.m3 + view.m1*projection.m7 + view.m2*projection.m11 + view.m3*projection.m15, - view.m4*projection.m0 + view.m5*projection.m4 + view.m6*projection.m8 + view.m7*projection.m12, - view.m4*projection.m1 + view.m5*projection.m5 + view.m6*projection.m9 + view.m7*projection.m13, - view.m4*projection.m2 + view.m5*projection.m6 + view.m6*projection.m10 + view.m7*projection.m14, - view.m4*projection.m3 + view.m5*projection.m7 + view.m6*projection.m11 + view.m7*projection.m15, - view.m8*projection.m0 + view.m9*projection.m4 + view.m10*projection.m8 + view.m11*projection.m12, - view.m8*projection.m1 + view.m9*projection.m5 + view.m10*projection.m9 + view.m11*projection.m13, - view.m8*projection.m2 + view.m9*projection.m6 + view.m10*projection.m10 + view.m11*projection.m14, - view.m8*projection.m3 + view.m9*projection.m7 + view.m10*projection.m11 + view.m11*projection.m15, - view.m12*projection.m0 + view.m13*projection.m4 + view.m14*projection.m8 + view.m15*projection.m12, - view.m12*projection.m1 + view.m13*projection.m5 + view.m14*projection.m9 + view.m15*projection.m13, - view.m12*projection.m2 + view.m13*projection.m6 + view.m14*projection.m10 + view.m15*projection.m14, - view.m12*projection.m3 + view.m13*projection.m7 + view.m14*projection.m11 + view.m15*projection.m15 }; - - // Calculate inverted matrix -> MatrixInvert(matViewProj); - // Cache the matrix values (speed optimization) - float a00 = matViewProj.m0, a01 = matViewProj.m1, a02 = matViewProj.m2, a03 = matViewProj.m3; - float a10 = matViewProj.m4, a11 = matViewProj.m5, a12 = matViewProj.m6, a13 = matViewProj.m7; - float a20 = matViewProj.m8, a21 = matViewProj.m9, a22 = matViewProj.m10, a23 = matViewProj.m11; - float a30 = matViewProj.m12, a31 = matViewProj.m13, a32 = matViewProj.m14, a33 = matViewProj.m15; - - float b00 = a00*a11 - a01*a10; - float b01 = a00*a12 - a02*a10; - float b02 = a00*a13 - a03*a10; - float b03 = a01*a12 - a02*a11; - float b04 = a01*a13 - a03*a11; - float b05 = a02*a13 - a03*a12; - float b06 = a20*a31 - a21*a30; - float b07 = a20*a32 - a22*a30; - float b08 = a20*a33 - a23*a30; - float b09 = a21*a32 - a22*a31; - float b10 = a21*a33 - a23*a31; - float b11 = a22*a33 - a23*a32; - - // Calculate the invert determinant (inlined to avoid double-caching) - float invDet = 1.0f/(b00*b11 - b01*b10 + b02*b09 + b03*b08 - b04*b07 + b05*b06); - - Matrix matViewProjInv = { - (a11*b11 - a12*b10 + a13*b09)*invDet, - (-a01*b11 + a02*b10 - a03*b09)*invDet, - (a31*b05 - a32*b04 + a33*b03)*invDet, - (-a21*b05 + a22*b04 - a23*b03)*invDet, - (-a10*b11 + a12*b08 - a13*b07)*invDet, - (a00*b11 - a02*b08 + a03*b07)*invDet, - (-a30*b05 + a32*b02 - a33*b01)*invDet, - (a20*b05 - a22*b02 + a23*b01)*invDet, - (a10*b10 - a11*b08 + a13*b06)*invDet, - (-a00*b10 + a01*b08 - a03*b06)*invDet, - (a30*b04 - a31*b02 + a33*b00)*invDet, - (-a20*b04 + a21*b02 - a23*b00)*invDet, - (-a10*b09 + a11*b07 - a12*b06)*invDet, - (a00*b09 - a01*b07 + a02*b06)*invDet, - (-a30*b03 + a31*b01 - a32*b00)*invDet, - (a20*b03 - a21*b01 + a22*b00)*invDet }; - - // Create quaternion from source point - Quaternion quat = { source.x, source.y, source.z, 1.0f }; - - // Multiply quat point by unprojecte matrix - Quaternion qtransformed = { // QuaternionTransform(quat, matViewProjInv) - matViewProjInv.m0*quat.x + matViewProjInv.m4*quat.y + matViewProjInv.m8*quat.z + matViewProjInv.m12*quat.w, - matViewProjInv.m1*quat.x + matViewProjInv.m5*quat.y + matViewProjInv.m9*quat.z + matViewProjInv.m13*quat.w, - matViewProjInv.m2*quat.x + matViewProjInv.m6*quat.y + matViewProjInv.m10*quat.z + matViewProjInv.m14*quat.w, - matViewProjInv.m3*quat.x + matViewProjInv.m7*quat.y + matViewProjInv.m11*quat.z + matViewProjInv.m15*quat.w }; - - // Normalized world points in vectors - result.x = qtransformed.x/qtransformed.w; - result.y = qtransformed.y/qtransformed.w; - result.z = qtransformed.z/qtransformed.w; - - return result; -} - -// Get Vector3 as float array -RMAPI float3 Vector3ToFloatV(Vector3 v) -{ - float3 buffer = { 0 }; - - buffer.v[0] = v.x; - buffer.v[1] = v.y; - buffer.v[2] = v.z; - - return buffer; -} - -// Invert the given vector -RMAPI Vector3 Vector3Invert(Vector3 v) -{ - Vector3 result = { 1.0f/v.x, 1.0f/v.y, 1.0f/v.z }; - - return result; -} - -// Clamp the components of the vector between -// min and max values specified by the given vectors -RMAPI Vector3 Vector3Clamp(Vector3 v, Vector3 min, Vector3 max) -{ - Vector3 result = { 0 }; - - result.x = fminf(max.x, fmaxf(min.x, v.x)); - result.y = fminf(max.y, fmaxf(min.y, v.y)); - result.z = fminf(max.z, fmaxf(min.z, v.z)); - - return result; -} - -// Clamp the magnitude of the vector between two values -RMAPI Vector3 Vector3ClampValue(Vector3 v, float min, float max) -{ - Vector3 result = v; - - float length = (v.x*v.x) + (v.y*v.y) + (v.z*v.z); - if (length > 0.0f) - { - length = sqrtf(length); - - if (length < min) - { - float scale = min/length; - result.x = v.x*scale; - result.y = v.y*scale; - result.z = v.z*scale; - } - else if (length > max) - { - float scale = max/length; - result.x = v.x*scale; - result.y = v.y*scale; - result.z = v.z*scale; - } - } - - return result; -} - -// Check whether two given vectors are almost equal -RMAPI int Vector3Equals(Vector3 p, Vector3 q) -{ -#if !defined(EPSILON) - #define EPSILON 0.000001f -#endif - - int result = ((fabsf(p.x - q.x)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.x), fabsf(q.x))))) && - ((fabsf(p.y - q.y)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.y), fabsf(q.y))))) && - ((fabsf(p.z - q.z)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.z), fabsf(q.z))))); - - return result; -} - -// Compute the direction of a refracted ray -// v: normalized direction of the incoming ray -// n: normalized normal vector of the interface of two optical media -// r: ratio of the refractive index of the medium from where the ray comes -// to the refractive index of the medium on the other side of the surface -RMAPI Vector3 Vector3Refract(Vector3 v, Vector3 n, float r) -{ - Vector3 result = { 0 }; - - float dot = v.x*n.x + v.y*n.y + v.z*n.z; - float d = 1.0f - r*r*(1.0f - dot*dot); - - if (d >= 0.0f) - { - d = sqrtf(d); - v.x = r*v.x - (r*dot + d)*n.x; - v.y = r*v.y - (r*dot + d)*n.y; - v.z = r*v.z - (r*dot + d)*n.z; - - result = v; - } - - return result; -} - -//---------------------------------------------------------------------------------- -// Module Functions Definition - Matrix math -//---------------------------------------------------------------------------------- - -// Compute matrix determinant -RMAPI float MatrixDeterminant(Matrix mat) -{ - float result = 0.0f; - - // Cache the matrix values (speed optimization) - float a00 = mat.m0, a01 = mat.m1, a02 = mat.m2, a03 = mat.m3; - float a10 = mat.m4, a11 = mat.m5, a12 = mat.m6, a13 = mat.m7; - float a20 = mat.m8, a21 = mat.m9, a22 = mat.m10, a23 = mat.m11; - float a30 = mat.m12, a31 = mat.m13, a32 = mat.m14, a33 = mat.m15; - - result = a30*a21*a12*a03 - a20*a31*a12*a03 - a30*a11*a22*a03 + a10*a31*a22*a03 + - a20*a11*a32*a03 - a10*a21*a32*a03 - a30*a21*a02*a13 + a20*a31*a02*a13 + - a30*a01*a22*a13 - a00*a31*a22*a13 - a20*a01*a32*a13 + a00*a21*a32*a13 + - a30*a11*a02*a23 - a10*a31*a02*a23 - a30*a01*a12*a23 + a00*a31*a12*a23 + - a10*a01*a32*a23 - a00*a11*a32*a23 - a20*a11*a02*a33 + a10*a21*a02*a33 + - a20*a01*a12*a33 - a00*a21*a12*a33 - a10*a01*a22*a33 + a00*a11*a22*a33; - - return result; -} - -// Get the trace of the matrix (sum of the values along the diagonal) -RMAPI float MatrixTrace(Matrix mat) -{ - float result = (mat.m0 + mat.m5 + mat.m10 + mat.m15); - - return result; -} - -// Transposes provided matrix -RMAPI Matrix MatrixTranspose(Matrix mat) -{ - Matrix result = { 0 }; - - result.m0 = mat.m0; - result.m1 = mat.m4; - result.m2 = mat.m8; - result.m3 = mat.m12; - result.m4 = mat.m1; - result.m5 = mat.m5; - result.m6 = mat.m9; - result.m7 = mat.m13; - result.m8 = mat.m2; - result.m9 = mat.m6; - result.m10 = mat.m10; - result.m11 = mat.m14; - result.m12 = mat.m3; - result.m13 = mat.m7; - result.m14 = mat.m11; - result.m15 = mat.m15; - - return result; -} - -// Invert provided matrix -RMAPI Matrix MatrixInvert(Matrix mat) -{ - Matrix result = { 0 }; - - // Cache the matrix values (speed optimization) - float a00 = mat.m0, a01 = mat.m1, a02 = mat.m2, a03 = mat.m3; - float a10 = mat.m4, a11 = mat.m5, a12 = mat.m6, a13 = mat.m7; - float a20 = mat.m8, a21 = mat.m9, a22 = mat.m10, a23 = mat.m11; - float a30 = mat.m12, a31 = mat.m13, a32 = mat.m14, a33 = mat.m15; - - float b00 = a00*a11 - a01*a10; - float b01 = a00*a12 - a02*a10; - float b02 = a00*a13 - a03*a10; - float b03 = a01*a12 - a02*a11; - float b04 = a01*a13 - a03*a11; - float b05 = a02*a13 - a03*a12; - float b06 = a20*a31 - a21*a30; - float b07 = a20*a32 - a22*a30; - float b08 = a20*a33 - a23*a30; - float b09 = a21*a32 - a22*a31; - float b10 = a21*a33 - a23*a31; - float b11 = a22*a33 - a23*a32; - - // Calculate the invert determinant (inlined to avoid double-caching) - float invDet = 1.0f/(b00*b11 - b01*b10 + b02*b09 + b03*b08 - b04*b07 + b05*b06); - - result.m0 = (a11*b11 - a12*b10 + a13*b09)*invDet; - result.m1 = (-a01*b11 + a02*b10 - a03*b09)*invDet; - result.m2 = (a31*b05 - a32*b04 + a33*b03)*invDet; - result.m3 = (-a21*b05 + a22*b04 - a23*b03)*invDet; - result.m4 = (-a10*b11 + a12*b08 - a13*b07)*invDet; - result.m5 = (a00*b11 - a02*b08 + a03*b07)*invDet; - result.m6 = (-a30*b05 + a32*b02 - a33*b01)*invDet; - result.m7 = (a20*b05 - a22*b02 + a23*b01)*invDet; - result.m8 = (a10*b10 - a11*b08 + a13*b06)*invDet; - result.m9 = (-a00*b10 + a01*b08 - a03*b06)*invDet; - result.m10 = (a30*b04 - a31*b02 + a33*b00)*invDet; - result.m11 = (-a20*b04 + a21*b02 - a23*b00)*invDet; - result.m12 = (-a10*b09 + a11*b07 - a12*b06)*invDet; - result.m13 = (a00*b09 - a01*b07 + a02*b06)*invDet; - result.m14 = (-a30*b03 + a31*b01 - a32*b00)*invDet; - result.m15 = (a20*b03 - a21*b01 + a22*b00)*invDet; - - return result; -} - -// Get identity matrix -RMAPI Matrix MatrixIdentity(void) -{ - Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f, - 0.0f, 1.0f, 0.0f, 0.0f, - 0.0f, 0.0f, 1.0f, 0.0f, - 0.0f, 0.0f, 0.0f, 1.0f }; - - return result; -} - -// Add two matrices -RMAPI Matrix MatrixAdd(Matrix left, Matrix right) -{ - Matrix result = { 0 }; - - result.m0 = left.m0 + right.m0; - result.m1 = left.m1 + right.m1; - result.m2 = left.m2 + right.m2; - result.m3 = left.m3 + right.m3; - result.m4 = left.m4 + right.m4; - result.m5 = left.m5 + right.m5; - result.m6 = left.m6 + right.m6; - result.m7 = left.m7 + right.m7; - result.m8 = left.m8 + right.m8; - result.m9 = left.m9 + right.m9; - result.m10 = left.m10 + right.m10; - result.m11 = left.m11 + right.m11; - result.m12 = left.m12 + right.m12; - result.m13 = left.m13 + right.m13; - result.m14 = left.m14 + right.m14; - result.m15 = left.m15 + right.m15; - - return result; -} - -// Subtract two matrices (left - right) -RMAPI Matrix MatrixSubtract(Matrix left, Matrix right) -{ - Matrix result = { 0 }; - - result.m0 = left.m0 - right.m0; - result.m1 = left.m1 - right.m1; - result.m2 = left.m2 - right.m2; - result.m3 = left.m3 - right.m3; - result.m4 = left.m4 - right.m4; - result.m5 = left.m5 - right.m5; - result.m6 = left.m6 - right.m6; - result.m7 = left.m7 - right.m7; - result.m8 = left.m8 - right.m8; - result.m9 = left.m9 - right.m9; - result.m10 = left.m10 - right.m10; - result.m11 = left.m11 - right.m11; - result.m12 = left.m12 - right.m12; - result.m13 = left.m13 - right.m13; - result.m14 = left.m14 - right.m14; - result.m15 = left.m15 - right.m15; - - return result; -} - -// Get two matrix multiplication -// NOTE: When multiplying matrices... the order matters! -RMAPI Matrix MatrixMultiply(Matrix left, Matrix right) -{ - Matrix result = { 0 }; - - result.m0 = left.m0*right.m0 + left.m1*right.m4 + left.m2*right.m8 + left.m3*right.m12; - result.m1 = left.m0*right.m1 + left.m1*right.m5 + left.m2*right.m9 + left.m3*right.m13; - result.m2 = left.m0*right.m2 + left.m1*right.m6 + left.m2*right.m10 + left.m3*right.m14; - result.m3 = left.m0*right.m3 + left.m1*right.m7 + left.m2*right.m11 + left.m3*right.m15; - result.m4 = left.m4*right.m0 + left.m5*right.m4 + left.m6*right.m8 + left.m7*right.m12; - result.m5 = left.m4*right.m1 + left.m5*right.m5 + left.m6*right.m9 + left.m7*right.m13; - result.m6 = left.m4*right.m2 + left.m5*right.m6 + left.m6*right.m10 + left.m7*right.m14; - result.m7 = left.m4*right.m3 + left.m5*right.m7 + left.m6*right.m11 + left.m7*right.m15; - result.m8 = left.m8*right.m0 + left.m9*right.m4 + left.m10*right.m8 + left.m11*right.m12; - result.m9 = left.m8*right.m1 + left.m9*right.m5 + left.m10*right.m9 + left.m11*right.m13; - result.m10 = left.m8*right.m2 + left.m9*right.m6 + left.m10*right.m10 + left.m11*right.m14; - result.m11 = left.m8*right.m3 + left.m9*right.m7 + left.m10*right.m11 + left.m11*right.m15; - result.m12 = left.m12*right.m0 + left.m13*right.m4 + left.m14*right.m8 + left.m15*right.m12; - result.m13 = left.m12*right.m1 + left.m13*right.m5 + left.m14*right.m9 + left.m15*right.m13; - result.m14 = left.m12*right.m2 + left.m13*right.m6 + left.m14*right.m10 + left.m15*right.m14; - result.m15 = left.m12*right.m3 + left.m13*right.m7 + left.m14*right.m11 + left.m15*right.m15; - - return result; -} - -// Get translation matrix -RMAPI Matrix MatrixTranslate(float x, float y, float z) -{ - Matrix result = { 1.0f, 0.0f, 0.0f, x, - 0.0f, 1.0f, 0.0f, y, - 0.0f, 0.0f, 1.0f, z, - 0.0f, 0.0f, 0.0f, 1.0f }; - - return result; -} - -// Create rotation matrix from axis and angle -// NOTE: Angle should be provided in radians -RMAPI Matrix MatrixRotate(Vector3 axis, float angle) -{ - Matrix result = { 0 }; - - float x = axis.x, y = axis.y, z = axis.z; - - float lengthSquared = x*x + y*y + z*z; - - if ((lengthSquared != 1.0f) && (lengthSquared != 0.0f)) - { - float ilength = 1.0f/sqrtf(lengthSquared); - x *= ilength; - y *= ilength; - z *= ilength; - } - - float sinres = sinf(angle); - float cosres = cosf(angle); - float t = 1.0f - cosres; - - result.m0 = x*x*t + cosres; - result.m1 = y*x*t + z*sinres; - result.m2 = z*x*t - y*sinres; - result.m3 = 0.0f; - - result.m4 = x*y*t - z*sinres; - result.m5 = y*y*t + cosres; - result.m6 = z*y*t + x*sinres; - result.m7 = 0.0f; - - result.m8 = x*z*t + y*sinres; - result.m9 = y*z*t - x*sinres; - result.m10 = z*z*t + cosres; - result.m11 = 0.0f; - - result.m12 = 0.0f; - result.m13 = 0.0f; - result.m14 = 0.0f; - result.m15 = 1.0f; - - return result; -} - -// Get x-rotation matrix -// NOTE: Angle must be provided in radians -RMAPI Matrix MatrixRotateX(float angle) -{ - Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f, - 0.0f, 1.0f, 0.0f, 0.0f, - 0.0f, 0.0f, 1.0f, 0.0f, - 0.0f, 0.0f, 0.0f, 1.0f }; // MatrixIdentity() - - float cosres = cosf(angle); - float sinres = sinf(angle); - - result.m5 = cosres; - result.m6 = sinres; - result.m9 = -sinres; - result.m10 = cosres; - - return result; -} - -// Get y-rotation matrix -// NOTE: Angle must be provided in radians -RMAPI Matrix MatrixRotateY(float angle) -{ - Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f, - 0.0f, 1.0f, 0.0f, 0.0f, - 0.0f, 0.0f, 1.0f, 0.0f, - 0.0f, 0.0f, 0.0f, 1.0f }; // MatrixIdentity() - - float cosres = cosf(angle); - float sinres = sinf(angle); - - result.m0 = cosres; - result.m2 = -sinres; - result.m8 = sinres; - result.m10 = cosres; - - return result; -} - -// Get z-rotation matrix -// NOTE: Angle must be provided in radians -RMAPI Matrix MatrixRotateZ(float angle) -{ - Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f, - 0.0f, 1.0f, 0.0f, 0.0f, - 0.0f, 0.0f, 1.0f, 0.0f, - 0.0f, 0.0f, 0.0f, 1.0f }; // MatrixIdentity() - - float cosres = cosf(angle); - float sinres = sinf(angle); - - result.m0 = cosres; - result.m1 = sinres; - result.m4 = -sinres; - result.m5 = cosres; - - return result; -} - - -// Get xyz-rotation matrix -// NOTE: Angle must be provided in radians -RMAPI Matrix MatrixRotateXYZ(Vector3 angle) -{ - Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f, - 0.0f, 1.0f, 0.0f, 0.0f, - 0.0f, 0.0f, 1.0f, 0.0f, - 0.0f, 0.0f, 0.0f, 1.0f }; // MatrixIdentity() - - float cosz = cosf(-angle.z); - float sinz = sinf(-angle.z); - float cosy = cosf(-angle.y); - float siny = sinf(-angle.y); - float cosx = cosf(-angle.x); - float sinx = sinf(-angle.x); - - result.m0 = cosz*cosy; - result.m1 = (cosz*siny*sinx) - (sinz*cosx); - result.m2 = (cosz*siny*cosx) + (sinz*sinx); - - result.m4 = sinz*cosy; - result.m5 = (sinz*siny*sinx) + (cosz*cosx); - result.m6 = (sinz*siny*cosx) - (cosz*sinx); - - result.m8 = -siny; - result.m9 = cosy*sinx; - result.m10= cosy*cosx; - - return result; -} - -// Get zyx-rotation matrix -// NOTE: Angle must be provided in radians -RMAPI Matrix MatrixRotateZYX(Vector3 angle) -{ - Matrix result = { 0 }; - - float cz = cosf(angle.z); - float sz = sinf(angle.z); - float cy = cosf(angle.y); - float sy = sinf(angle.y); - float cx = cosf(angle.x); - float sx = sinf(angle.x); - - result.m0 = cz*cy; - result.m4 = cz*sy*sx - cx*sz; - result.m8 = sz*sx + cz*cx*sy; - result.m12 = 0; - - result.m1 = cy*sz; - result.m5 = cz*cx + sz*sy*sx; - result.m9 = cx*sz*sy - cz*sx; - result.m13 = 0; - - result.m2 = -sy; - result.m6 = cy*sx; - result.m10 = cy*cx; - result.m14 = 0; - - result.m3 = 0; - result.m7 = 0; - result.m11 = 0; - result.m15 = 1; - - return result; -} - -// Get scaling matrix -RMAPI Matrix MatrixScale(float x, float y, float z) -{ - Matrix result = { x, 0.0f, 0.0f, 0.0f, - 0.0f, y, 0.0f, 0.0f, - 0.0f, 0.0f, z, 0.0f, - 0.0f, 0.0f, 0.0f, 1.0f }; - - return result; -} - -// Get perspective projection matrix -RMAPI Matrix MatrixFrustum(double left, double right, double bottom, double top, double near, double far) -{ - Matrix result = { 0 }; - - float rl = (float)(right - left); - float tb = (float)(top - bottom); - float fn = (float)(far - near); - - result.m0 = ((float)near*2.0f)/rl; - result.m1 = 0.0f; - result.m2 = 0.0f; - result.m3 = 0.0f; - - result.m4 = 0.0f; - result.m5 = ((float)near*2.0f)/tb; - result.m6 = 0.0f; - result.m7 = 0.0f; - - result.m8 = ((float)right + (float)left)/rl; - result.m9 = ((float)top + (float)bottom)/tb; - result.m10 = -((float)far + (float)near)/fn; - result.m11 = -1.0f; - - result.m12 = 0.0f; - result.m13 = 0.0f; - result.m14 = -((float)far*(float)near*2.0f)/fn; - result.m15 = 0.0f; - - return result; -} - -// Get perspective projection matrix -// NOTE: Fovy angle must be provided in radians -RMAPI Matrix MatrixPerspective(double fovY, double aspect, double nearPlane, double farPlane) -{ - Matrix result = { 0 }; - - double top = nearPlane*tan(fovY*0.5); - double bottom = -top; - double right = top*aspect; - double left = -right; - - // MatrixFrustum(-right, right, -top, top, near, far); - float rl = (float)(right - left); - float tb = (float)(top - bottom); - float fn = (float)(farPlane - nearPlane); - - result.m0 = ((float)nearPlane*2.0f)/rl; - result.m5 = ((float)nearPlane*2.0f)/tb; - result.m8 = ((float)right + (float)left)/rl; - result.m9 = ((float)top + (float)bottom)/tb; - result.m10 = -((float)farPlane + (float)nearPlane)/fn; - result.m11 = -1.0f; - result.m14 = -((float)farPlane*(float)nearPlane*2.0f)/fn; - - return result; -} - -// Get orthographic projection matrix -RMAPI Matrix MatrixOrtho(double left, double right, double bottom, double top, double nearPlane, double farPlane) -{ - Matrix result = { 0 }; - - float rl = (float)(right - left); - float tb = (float)(top - bottom); - float fn = (float)(farPlane - nearPlane); - - result.m0 = 2.0f/rl; - result.m1 = 0.0f; - result.m2 = 0.0f; - result.m3 = 0.0f; - result.m4 = 0.0f; - result.m5 = 2.0f/tb; - result.m6 = 0.0f; - result.m7 = 0.0f; - result.m8 = 0.0f; - result.m9 = 0.0f; - result.m10 = -2.0f/fn; - result.m11 = 0.0f; - result.m12 = -((float)left + (float)right)/rl; - result.m13 = -((float)top + (float)bottom)/tb; - result.m14 = -((float)farPlane + (float)nearPlane)/fn; - result.m15 = 1.0f; - - return result; -} - -// Get camera look-at matrix (view matrix) -RMAPI Matrix MatrixLookAt(Vector3 eye, Vector3 target, Vector3 up) -{ - Matrix result = { 0 }; - - float length = 0.0f; - float ilength = 0.0f; - - // Vector3Subtract(eye, target) - Vector3 vz = { eye.x - target.x, eye.y - target.y, eye.z - target.z }; - - // Vector3Normalize(vz) - Vector3 v = vz; - length = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z); - if (length == 0.0f) length = 1.0f; - ilength = 1.0f/length; - vz.x *= ilength; - vz.y *= ilength; - vz.z *= ilength; - - // Vector3CrossProduct(up, vz) - Vector3 vx = { up.y*vz.z - up.z*vz.y, up.z*vz.x - up.x*vz.z, up.x*vz.y - up.y*vz.x }; - - // Vector3Normalize(x) - v = vx; - length = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z); - if (length == 0.0f) length = 1.0f; - ilength = 1.0f/length; - vx.x *= ilength; - vx.y *= ilength; - vx.z *= ilength; - - // Vector3CrossProduct(vz, vx) - Vector3 vy = { vz.y*vx.z - vz.z*vx.y, vz.z*vx.x - vz.x*vx.z, vz.x*vx.y - vz.y*vx.x }; - - result.m0 = vx.x; - result.m1 = vy.x; - result.m2 = vz.x; - result.m3 = 0.0f; - result.m4 = vx.y; - result.m5 = vy.y; - result.m6 = vz.y; - result.m7 = 0.0f; - result.m8 = vx.z; - result.m9 = vy.z; - result.m10 = vz.z; - result.m11 = 0.0f; - result.m12 = -(vx.x*eye.x + vx.y*eye.y + vx.z*eye.z); // Vector3DotProduct(vx, eye) - result.m13 = -(vy.x*eye.x + vy.y*eye.y + vy.z*eye.z); // Vector3DotProduct(vy, eye) - result.m14 = -(vz.x*eye.x + vz.y*eye.y + vz.z*eye.z); // Vector3DotProduct(vz, eye) - result.m15 = 1.0f; - - return result; -} - -// Get float array of matrix data -RMAPI float16 MatrixToFloatV(Matrix mat) -{ - float16 result = { 0 }; - - result.v[0] = mat.m0; - result.v[1] = mat.m1; - result.v[2] = mat.m2; - result.v[3] = mat.m3; - result.v[4] = mat.m4; - result.v[5] = mat.m5; - result.v[6] = mat.m6; - result.v[7] = mat.m7; - result.v[8] = mat.m8; - result.v[9] = mat.m9; - result.v[10] = mat.m10; - result.v[11] = mat.m11; - result.v[12] = mat.m12; - result.v[13] = mat.m13; - result.v[14] = mat.m14; - result.v[15] = mat.m15; - - return result; -} - -//---------------------------------------------------------------------------------- -// Module Functions Definition - Quaternion math -//---------------------------------------------------------------------------------- - -// Add two quaternions -RMAPI Quaternion QuaternionAdd(Quaternion q1, Quaternion q2) -{ - Quaternion result = {q1.x + q2.x, q1.y + q2.y, q1.z + q2.z, q1.w + q2.w}; - - return result; -} - -// Add quaternion and float value -RMAPI Quaternion QuaternionAddValue(Quaternion q, float add) -{ - Quaternion result = {q.x + add, q.y + add, q.z + add, q.w + add}; - - return result; -} - -// Subtract two quaternions -RMAPI Quaternion QuaternionSubtract(Quaternion q1, Quaternion q2) -{ - Quaternion result = {q1.x - q2.x, q1.y - q2.y, q1.z - q2.z, q1.w - q2.w}; - - return result; -} - -// Subtract quaternion and float value -RMAPI Quaternion QuaternionSubtractValue(Quaternion q, float sub) -{ - Quaternion result = {q.x - sub, q.y - sub, q.z - sub, q.w - sub}; - - return result; -} - -// Get identity quaternion -RMAPI Quaternion QuaternionIdentity(void) -{ - Quaternion result = { 0.0f, 0.0f, 0.0f, 1.0f }; - - return result; -} - -// Computes the length of a quaternion -RMAPI float QuaternionLength(Quaternion q) -{ - float result = sqrtf(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w); - - return result; -} - -// Normalize provided quaternion -RMAPI Quaternion QuaternionNormalize(Quaternion q) -{ - Quaternion result = { 0 }; - - float length = sqrtf(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w); - if (length == 0.0f) length = 1.0f; - float ilength = 1.0f/length; - - result.x = q.x*ilength; - result.y = q.y*ilength; - result.z = q.z*ilength; - result.w = q.w*ilength; - - return result; -} - -// Invert provided quaternion -RMAPI Quaternion QuaternionInvert(Quaternion q) -{ - Quaternion result = q; - - float lengthSq = q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w; - - if (lengthSq != 0.0f) - { - float invLength = 1.0f/lengthSq; - - result.x *= -invLength; - result.y *= -invLength; - result.z *= -invLength; - result.w *= invLength; - } - - return result; -} - -// Calculate two quaternion multiplication -RMAPI Quaternion QuaternionMultiply(Quaternion q1, Quaternion q2) -{ - Quaternion result = { 0 }; - - float qax = q1.x, qay = q1.y, qaz = q1.z, qaw = q1.w; - float qbx = q2.x, qby = q2.y, qbz = q2.z, qbw = q2.w; - - result.x = qax*qbw + qaw*qbx + qay*qbz - qaz*qby; - result.y = qay*qbw + qaw*qby + qaz*qbx - qax*qbz; - result.z = qaz*qbw + qaw*qbz + qax*qby - qay*qbx; - result.w = qaw*qbw - qax*qbx - qay*qby - qaz*qbz; - - return result; -} - -// Scale quaternion by float value -RMAPI Quaternion QuaternionScale(Quaternion q, float mul) -{ - Quaternion result = { 0 }; - - result.x = q.x*mul; - result.y = q.y*mul; - result.z = q.z*mul; - result.w = q.w*mul; - - return result; -} - -// Divide two quaternions -RMAPI Quaternion QuaternionDivide(Quaternion q1, Quaternion q2) -{ - Quaternion result = { q1.x/q2.x, q1.y/q2.y, q1.z/q2.z, q1.w/q2.w }; - - return result; -} - -// Calculate linear interpolation between two quaternions -RMAPI Quaternion QuaternionLerp(Quaternion q1, Quaternion q2, float amount) -{ - Quaternion result = { 0 }; - - result.x = q1.x + amount*(q2.x - q1.x); - result.y = q1.y + amount*(q2.y - q1.y); - result.z = q1.z + amount*(q2.z - q1.z); - result.w = q1.w + amount*(q2.w - q1.w); - - return result; -} - -// Calculate slerp-optimized interpolation between two quaternions -RMAPI Quaternion QuaternionNlerp(Quaternion q1, Quaternion q2, float amount) -{ - Quaternion result = { 0 }; - - // QuaternionLerp(q1, q2, amount) - result.x = q1.x + amount*(q2.x - q1.x); - result.y = q1.y + amount*(q2.y - q1.y); - result.z = q1.z + amount*(q2.z - q1.z); - result.w = q1.w + amount*(q2.w - q1.w); - - // QuaternionNormalize(q); - Quaternion q = result; - float length = sqrtf(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w); - if (length == 0.0f) length = 1.0f; - float ilength = 1.0f/length; - - result.x = q.x*ilength; - result.y = q.y*ilength; - result.z = q.z*ilength; - result.w = q.w*ilength; - - return result; -} - -// Calculates spherical linear interpolation between two quaternions -RMAPI Quaternion QuaternionSlerp(Quaternion q1, Quaternion q2, float amount) -{ - Quaternion result = { 0 }; - -#if !defined(EPSILON) - #define EPSILON 0.000001f -#endif - - float cosHalfTheta = q1.x*q2.x + q1.y*q2.y + q1.z*q2.z + q1.w*q2.w; - - if (cosHalfTheta < 0) - { - q2.x = -q2.x; q2.y = -q2.y; q2.z = -q2.z; q2.w = -q2.w; - cosHalfTheta = -cosHalfTheta; - } - - if (fabsf(cosHalfTheta) >= 1.0f) result = q1; - else if (cosHalfTheta > 0.95f) result = QuaternionNlerp(q1, q2, amount); - else - { - float halfTheta = acosf(cosHalfTheta); - float sinHalfTheta = sqrtf(1.0f - cosHalfTheta*cosHalfTheta); - - if (fabsf(sinHalfTheta) < EPSILON) - { - result.x = (q1.x*0.5f + q2.x*0.5f); - result.y = (q1.y*0.5f + q2.y*0.5f); - result.z = (q1.z*0.5f + q2.z*0.5f); - result.w = (q1.w*0.5f + q2.w*0.5f); - } - else - { - float ratioA = sinf((1 - amount)*halfTheta)/sinHalfTheta; - float ratioB = sinf(amount*halfTheta)/sinHalfTheta; - - result.x = (q1.x*ratioA + q2.x*ratioB); - result.y = (q1.y*ratioA + q2.y*ratioB); - result.z = (q1.z*ratioA + q2.z*ratioB); - result.w = (q1.w*ratioA + q2.w*ratioB); - } - } - - return result; -} - -// Calculate quaternion based on the rotation from one vector to another -RMAPI Quaternion QuaternionFromVector3ToVector3(Vector3 from, Vector3 to) -{ - Quaternion result = { 0 }; - - float cos2Theta = (from.x*to.x + from.y*to.y + from.z*to.z); // Vector3DotProduct(from, to) - Vector3 cross = { from.y*to.z - from.z*to.y, from.z*to.x - from.x*to.z, from.x*to.y - from.y*to.x }; // Vector3CrossProduct(from, to) - - result.x = cross.x; - result.y = cross.y; - result.z = cross.z; - result.w = 1.0f + cos2Theta; - - // QuaternionNormalize(q); - // NOTE: Normalize to essentially nlerp the original and identity to 0.5 - Quaternion q = result; - float length = sqrtf(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w); - if (length == 0.0f) length = 1.0f; - float ilength = 1.0f/length; - - result.x = q.x*ilength; - result.y = q.y*ilength; - result.z = q.z*ilength; - result.w = q.w*ilength; - - return result; -} - -// Get a quaternion for a given rotation matrix -RMAPI Quaternion QuaternionFromMatrix(Matrix mat) -{ - Quaternion result = { 0 }; - - float fourWSquaredMinus1 = mat.m0 + mat.m5 + mat.m10; - float fourXSquaredMinus1 = mat.m0 - mat.m5 - mat.m10; - float fourYSquaredMinus1 = mat.m5 - mat.m0 - mat.m10; - float fourZSquaredMinus1 = mat.m10 - mat.m0 - mat.m5; - - int biggestIndex = 0; - float fourBiggestSquaredMinus1 = fourWSquaredMinus1; - if (fourXSquaredMinus1 > fourBiggestSquaredMinus1) - { - fourBiggestSquaredMinus1 = fourXSquaredMinus1; - biggestIndex = 1; - } - - if (fourYSquaredMinus1 > fourBiggestSquaredMinus1) - { - fourBiggestSquaredMinus1 = fourYSquaredMinus1; - biggestIndex = 2; - } - - if (fourZSquaredMinus1 > fourBiggestSquaredMinus1) - { - fourBiggestSquaredMinus1 = fourZSquaredMinus1; - biggestIndex = 3; - } - - float biggestVal = sqrtf(fourBiggestSquaredMinus1 + 1.0f)*0.5f; - float mult = 0.25f / biggestVal; - - switch (biggestIndex) - { - case 0: - result.w = biggestVal; - result.x = (mat.m6 - mat.m9)*mult; - result.y = (mat.m8 - mat.m2)*mult; - result.z = (mat.m1 - mat.m4)*mult; - break; - case 1: - result.x = biggestVal; - result.w = (mat.m6 - mat.m9)*mult; - result.y = (mat.m1 + mat.m4)*mult; - result.z = (mat.m8 + mat.m2)*mult; - break; - case 2: - result.y = biggestVal; - result.w = (mat.m8 - mat.m2)*mult; - result.x = (mat.m1 + mat.m4)*mult; - result.z = (mat.m6 + mat.m9)*mult; - break; - case 3: - result.z = biggestVal; - result.w = (mat.m1 - mat.m4)*mult; - result.x = (mat.m8 + mat.m2)*mult; - result.y = (mat.m6 + mat.m9)*mult; - break; - } - - return result; -} - -// Get a matrix for a given quaternion -RMAPI Matrix QuaternionToMatrix(Quaternion q) -{ - Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f, - 0.0f, 1.0f, 0.0f, 0.0f, - 0.0f, 0.0f, 1.0f, 0.0f, - 0.0f, 0.0f, 0.0f, 1.0f }; // MatrixIdentity() - - float a2 = q.x*q.x; - float b2 = q.y*q.y; - float c2 = q.z*q.z; - float ac = q.x*q.z; - float ab = q.x*q.y; - float bc = q.y*q.z; - float ad = q.w*q.x; - float bd = q.w*q.y; - float cd = q.w*q.z; - - result.m0 = 1 - 2*(b2 + c2); - result.m1 = 2*(ab + cd); - result.m2 = 2*(ac - bd); - - result.m4 = 2*(ab - cd); - result.m5 = 1 - 2*(a2 + c2); - result.m6 = 2*(bc + ad); - - result.m8 = 2*(ac + bd); - result.m9 = 2*(bc - ad); - result.m10 = 1 - 2*(a2 + b2); - - return result; -} - -// Get rotation quaternion for an angle and axis -// NOTE: Angle must be provided in radians -RMAPI Quaternion QuaternionFromAxisAngle(Vector3 axis, float angle) -{ - Quaternion result = { 0.0f, 0.0f, 0.0f, 1.0f }; - - float axisLength = sqrtf(axis.x*axis.x + axis.y*axis.y + axis.z*axis.z); - - if (axisLength != 0.0f) - { - angle *= 0.5f; - - float length = 0.0f; - float ilength = 0.0f; - - // Vector3Normalize(axis) - Vector3 v = axis; - length = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z); - if (length == 0.0f) length = 1.0f; - ilength = 1.0f/length; - axis.x *= ilength; - axis.y *= ilength; - axis.z *= ilength; - - float sinres = sinf(angle); - float cosres = cosf(angle); - - result.x = axis.x*sinres; - result.y = axis.y*sinres; - result.z = axis.z*sinres; - result.w = cosres; - - // QuaternionNormalize(q); - Quaternion q = result; - length = sqrtf(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w); - if (length == 0.0f) length = 1.0f; - ilength = 1.0f/length; - result.x = q.x*ilength; - result.y = q.y*ilength; - result.z = q.z*ilength; - result.w = q.w*ilength; - } - - return result; -} - -// Get the rotation angle and axis for a given quaternion -RMAPI void QuaternionToAxisAngle(Quaternion q, Vector3 *outAxis, float *outAngle) -{ - if (fabsf(q.w) > 1.0f) - { - // QuaternionNormalize(q); - float length = sqrtf(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w); - if (length == 0.0f) length = 1.0f; - float ilength = 1.0f/length; - - q.x = q.x*ilength; - q.y = q.y*ilength; - q.z = q.z*ilength; - q.w = q.w*ilength; - } - - Vector3 resAxis = { 0.0f, 0.0f, 0.0f }; - float resAngle = 2.0f*acosf(q.w); - float den = sqrtf(1.0f - q.w*q.w); - - if (den > EPSILON) - { - resAxis.x = q.x/den; - resAxis.y = q.y/den; - resAxis.z = q.z/den; - } - else - { - // This occurs when the angle is zero. - // Not a problem: just set an arbitrary normalized axis. - resAxis.x = 1.0f; - } - - *outAxis = resAxis; - *outAngle = resAngle; -} - -// Get the quaternion equivalent to Euler angles -// NOTE: Rotation order is ZYX -RMAPI Quaternion QuaternionFromEuler(float pitch, float yaw, float roll) -{ - Quaternion result = { 0 }; - - float x0 = cosf(pitch*0.5f); - float x1 = sinf(pitch*0.5f); - float y0 = cosf(yaw*0.5f); - float y1 = sinf(yaw*0.5f); - float z0 = cosf(roll*0.5f); - float z1 = sinf(roll*0.5f); - - result.x = x1*y0*z0 - x0*y1*z1; - result.y = x0*y1*z0 + x1*y0*z1; - result.z = x0*y0*z1 - x1*y1*z0; - result.w = x0*y0*z0 + x1*y1*z1; - - return result; -} - -// Get the Euler angles equivalent to quaternion (roll, pitch, yaw) -// NOTE: Angles are returned in a Vector3 struct in radians -RMAPI Vector3 QuaternionToEuler(Quaternion q) -{ - Vector3 result = { 0 }; - - // Roll (x-axis rotation) - float x0 = 2.0f*(q.w*q.x + q.y*q.z); - float x1 = 1.0f - 2.0f*(q.x*q.x + q.y*q.y); - result.x = atan2f(x0, x1); - - // Pitch (y-axis rotation) - float y0 = 2.0f*(q.w*q.y - q.z*q.x); - y0 = y0 > 1.0f ? 1.0f : y0; - y0 = y0 < -1.0f ? -1.0f : y0; - result.y = asinf(y0); - - // Yaw (z-axis rotation) - float z0 = 2.0f*(q.w*q.z + q.x*q.y); - float z1 = 1.0f - 2.0f*(q.y*q.y + q.z*q.z); - result.z = atan2f(z0, z1); - - return result; -} - -// Transform a quaternion given a transformation matrix -RMAPI Quaternion QuaternionTransform(Quaternion q, Matrix mat) -{ - Quaternion result = { 0 }; - - result.x = mat.m0*q.x + mat.m4*q.y + mat.m8*q.z + mat.m12*q.w; - result.y = mat.m1*q.x + mat.m5*q.y + mat.m9*q.z + mat.m13*q.w; - result.z = mat.m2*q.x + mat.m6*q.y + mat.m10*q.z + mat.m14*q.w; - result.w = mat.m3*q.x + mat.m7*q.y + mat.m11*q.z + mat.m15*q.w; - - return result; -} - -// Check whether two given quaternions are almost equal -RMAPI int QuaternionEquals(Quaternion p, Quaternion q) -{ -#if !defined(EPSILON) - #define EPSILON 0.000001f -#endif - - int result = (((fabsf(p.x - q.x)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.x), fabsf(q.x))))) && - ((fabsf(p.y - q.y)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.y), fabsf(q.y))))) && - ((fabsf(p.z - q.z)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.z), fabsf(q.z))))) && - ((fabsf(p.w - q.w)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.w), fabsf(q.w)))))) || - (((fabsf(p.x + q.x)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.x), fabsf(q.x))))) && - ((fabsf(p.y + q.y)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.y), fabsf(q.y))))) && - ((fabsf(p.z + q.z)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.z), fabsf(q.z))))) && - ((fabsf(p.w + q.w)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.w), fabsf(q.w)))))); - - return result; -} - -#endif // RAYMATH_H -- cgit v1.2.3